Classification of Human Emotions from Electroencephalogram (EEG) Signal using Deep Neural Network
نویسندگان
چکیده
Estimation of human emotions from Electroencephalogram (EEG) signals plays a vital role in developing robust Brain-Computer Interface (BCI) systems. In our research, we used Deep Neural Network (DNN) to address EEG-based emotion recognition. This was motivated by the recent advances in accuracy and efficiency from applying deep learning techniques in pattern recognition and classification applications. We adapted DNN to identify human emotions of a given EEG signal (DEAP dataset) from power spectral density (PSD) and frontal asymmetry features. The proposed approach is compared to state-of-the-art emotion detection systems on the same dataset. Results show how EEG based emotion recognition can greatly benefit from using DNNs, especially when a large amount of training data is available. Keywords—Electroencephalogram (EEG); Brain-Computer Interface (BCI); emotion recognition; affective state; Deep Neural Network (DNN); DEAP dataset
منابع مشابه
Effectiveness of Statistical Features for Human Emotions Classification using EEG Biosensors
This study proposes a statistical features-based classification system for human emotions by using Electroencephalogram (EEG) bio-sensors. A total of six statistical features are computed from the EEG data and Artificial Neural Network is applied for the classification of emotions. The system is trained and tested with the statistical features extracted from the psychological signals acquired u...
متن کاملDetection and Classification of Emotions Using Physiological Signals and Pattern Recognition Methods
Introduction: Emotions play an important role in health, communication, and interaction between humans. The ability to recognize the emotional status of people is an important indicator of health and natural relationships. In DEAP database, electroencephalogram (EEG) signals as well as environmental physiological signals related to 32 volunteers are registered. The participants in each video we...
متن کاملDetection and Classification of Emotions Using Physiological Signals and Pattern Recognition Methods
Introduction: Emotions play an important role in health, communication, and interaction between humans. The ability to recognize the emotional status of people is an important indicator of health and natural relationships. In DEAP database, electroencephalogram (EEG) signals as well as environmental physiological signals related to 32 volunteers are registered. The participants in each video we...
متن کاملA hybrid EEG-based emotion recognition approach using Wavelet Convolutional Neural Networks (WCNN) and support vector machine
Nowadays, deep learning and convolutional neural networks (CNNs) have become widespread tools in many biomedical engineering studies. CNN is an end-to-end tool which makes processing procedure integrated, but in some situations, this processing tool requires to be fused with machine learning methods to be more accurate. In this paper, a hybrid approach based on deep features extracted from Wave...
متن کاملClassification of Right/Left Hand Motor Imagery by Effective Connectivity Based on Transfer Entropy in EEG Signal
The right and left hand Motor Imagery (MI) analysis based on the electroencephalogram (EEG) signal can directly link the central nervous system to a computer or a device. This study aims to identify a set of robust and nonlinear effective brain connectivity features quantified by transfer entropy (TE) to characterize the relationship between brain regions from EEG signals and create a hierarchi...
متن کامل